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SUMMARY 
In this paper a method is developed for the numerical solution of singular integral equations related to the water- 
wave problem. Periodic gravity waves of constant form in water of finite depth have been studied. The problem has 
been programmed and run on a computer, and the computed results plotted and compared with those of other 
authors. Some difficulties of the computing and some checking of the solution are discussed. 

1. Introduction 

The problem of free streamlines is an old and difficult one in hydrodynamics. The difficulty 
arises from the fact that it is a mixed Dirichlet-Neumann boundary-value problem, in which 
the positions of part of the boundary, the free streamlines, are unknown, and along the free 
streamline, the pressure is constant. 

The problem of a steady progressive wave is such a free-surface problem. The theory of 
water waves was first investigated by Gerstner [4] in 1804. In 1847, Stokes [ 16] investigated 
the motion of a water wave of constant form and finite amplitude to third order of 
approximation, for water of infinite depth, and to second order of approximation when the 
depth is finite. Later, in 1880 [17] he reworked the problem, using the velocity potential and 
stream function, rather than the space coordinates, as independent variables. He obtained 
the fifth order of approximation for infinite depth and the third order of approximation for 
finite depth of water. De [2] extended the works of Stokes to fifth order of approximation. 
Recently (1974) Schwartz [14] extended the approximation to very high order (30 to 115 
terms) using a modern digital computer to perform the coefficient arithmetic, and used Pad6 
approximation to sum the series and continue it analytically. 

A proof of the existence of periodic gravity waves of constant form in water of infinite 
depth was first given by Nekrasov [13] and later independently by Levi-Civita [10]. 
Nekrasov formulated the problem as a nonlinear integral equation, and showed that a non- 
trivial solution could be found for sufficiently small values of wave amplitudes. Levi-Civita's 
formulation of the problem is essentially the same as Nekrasov's. He established the 
existence of the solution by establishing the convergence of a series in amplitude-to- 
wavelength/t, for sufficiently small values of/~. No estimate of a radius of convergence was 
given. Struik [18] extended the work of Levi-Civita to water of finite depth. Some errors of 
Struik's paper have been corrected by Hunt [6]. Krasovskii [8] in 1960 gave a proof using 
the theory of positive operators. He showed that Nekrasov's integral equation has a 
solution for any depth, provided that the maximum surface angle does not exceed n/6. 
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The existence of highest progressive waves is still an open problem. In 1880, Stokes [17], 
assuming that such a wave existed, showed that the maximum surface angle should be ~r/6. 
Michell [12], Havelock [5], Nekrasov [13] and Yamada [23] also investigated the highest 
progressive waves and Michell [12] showed, using series, that the amplitude-to-wavelength 
ratio is approximately 1 : 7. 

In this paper, we consider the water-wave problem, using a numerical method based on 
integral equations. In 1925, Lauck [9] investigated the form of the free streamline for the 
flow over a weir of infinite depth, and at rest at infinity, using Cauchy's integral formula. He 
made an assumption that the flow at infinity should be radial in the z-plane and solved the 
integral equations successively for x and y by graphical integration. In 1963, Jaswon [7], 
Symm [19] and others used Fred'holm's first integral equation and Green's boundary 
formula to solve numerically some potential problems particularly in elasticity. The 
numerical technique used will be discussed briefly in later sections. Jaswon [7] mentioned 
that the integral-equation method for solving the boundary-value problems of potential 
theory and classical elasticity has not been greatly exploited. He also indicated three reasons 
for this: firstly, most integral equations of physical significance involve singular or weakly 
singular kernels; secondly, the integral-equation method will eventually involve solving a 
fairly large number of simultaneous linear algebraic equations which can only be handled by 
modern digital computers; lastly, a given integral equation may, or may not, have a 
solution. Since high-speed computers have been developed, the second difficulty will no 
longer be so important. The first difficulty in most cases could be overcome by developing 
some higher-order formulas for the equations around the singularities. 

The problem will be formulated in Section 2. In Section 3, we derive the integral equations 
for solving the problem, and discuss the connection of our equation with Jaswon's [7]. In 
Section 4, we discuss the numerical method we propose to use for solving the integral 
equation; in particular, we develop some approximate formulae for points near corners and 
around singularities. In Section 5, we compare the computed results with those of Thomas 
[20], Conway and Thomas [1], Schwartz [14] and Wehausen and Laitone [22]. 

2. Formulation of the problem 

Consider a symmetrical two-dimensional periodic wave moving from right to left with 
constant velocity c on the surface of fluid of finite depth. If we superpose a constant velocity 
c on the fluid from left to right, the motion becomes steady, and the motion of the fluid is 
from left to right. The fluid is assumed to be inviscid and incompressible, and the motion 
irrotational. The bottom of the fluid is assumed to be horizontal, and the depth from the 
undisturbed water level (the mean depth of the fluid) is h. We shall investigate the motion of 
the fluid contained in a half-wavelength, that is, the region A B C D  (see Fig. 1 ). Let the origin 
of the space coordinates x, y be in a trough (that is, the point D in Fig. 1 ); the x-axis from left 
to right; and the y-axis upward. The wavelength is denoted by 2 and the amplitude of the 
wave by a. Let the least depth of the fluid be h 1 and the mean elevation of the wave from the 
trough be d; then h = h 1 + d. The wave speed c may be defined as 

c = -~ u(x, y)dx .  (I) 
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This is the Stokes' second definition of the wave speed c. For more details of discussion of 
this, the reader should consult Stokes 1-16] or Wehausen and Laitone [22, pp. 456-7]. 

Let ~b be the velocity potential and ~u the stream function, and w = ~b + i~u, z = x + iy. 
Then dw/dz  = u -  iv = qe -~°. Now we map the fluid region A B C D  in the z-plane into 
A B C D  in the w-plane. Consider Bernoulli's equation along the free streamline DC, with 
density p = 1, 

q2 + 2gy = constant = q2 (2) 

which may be written in integral form by differentiating with respect to ~b, replacing dy/dqb 
by v/q 2 = (sin O)/q, and integrating to obtain 

+ 317 f ]  sin O(t)dt = q3, (3) q3 

where qo is the speed at D. 
We now introduce dimensionless variables, 

= ( ] ) / ~ / # 1 '  ~ = ~ / / / ~ 1 / 1 '  71 ~ -  q/qo' g = gGsl/q3 

where !ul is the volume flux across AD (see Figure l ). Then (3) becomes 

+ 3~ j~  sin O(t)dt = 7t 3 = 713 1. 

We now drop all the bars, writing 

+ 3g f ~  sin O(t)dt = q3 = l, (4) q3 

remembering that all variables hereafter are dimensionless. Then qo = 1 and !u 1 = 1. 
Equation (4) is the free-surface condition in integral form. 
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If all q's along AB, BC, CD and DA, and 0 along CD have been computed, then the form of 
the free surface (x, y), the wave speed c, the wavelength 2, the amplitude a, the mean 
elevation d, the height hi, the mean depth h and other quantities can be calculated. Here ~b 1 
and qa, the velocity at the crest C, are assumed to be given. Clearly from (2), all y's are 
known. The x's and y's can also be computed from x0 = (cos O)/q and yo = (sin O)/q, that is 

cos O(t) 
x(~) = I 

do q(t) 

sin O(t) y(c~) = | 
do q(t) 

Thus, 

- - d t  along DC, 

- - d t  along DC. 

(5) 

2 = 2 x  c, a=yc ,  since x D = y o = 0 .  (6) 

For  the wave speed c, 

2 f~/2 2~ 1 c = ~  u (x , y )dx= 2 (7) 

Let T 1 be the time required for a fluid particle to travel from D to C along the free surface 
DC. The mass-transport velocity u o along DC is defined by 

2 
u o = c 27"1 , (8) 

see UrseU [21] or Longuet-Higgins [11]. Moreover T 1 can be expressed in the form 

ff' f f '  1 d(a along DC. T 1 = at = q(¢)2 (9) 

The mean elevation d of the wave above the trough is defined by 

d = -~ y(x)dx. 

Levi-Civita [10] has shown that 

c 2 + 2gd = q~ 

where 

c~ = 7 u2(x, y)dx = ~- q(¢)d4, along AB. 

(10) 

(11) 

The depth h 1 of the fluid at the trough D is 

h t = dy = dq/ along AD. 
hi 

(12) 
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3. Cauchy integral equations 

Let F be a simple closed contour ,  taken in the positive sense (counter-clockwise),  such that  

the function f(z) is analytic at every point  of F and its interior. Then the Cauchy  integral 

formula  is 

2~zi f(zo) = f f(z) dz (13) 
dr Z - -  Z 0 

if z 0 is an interior point.  
The  left-hand side of  (13) is zero if z o is an exterior point. Now,  suppose  z 0 is a point  on 

the con tour  F, and F is smoo th  at z o. Then  the Cauchy  integral formula  becomes 

zci f(z°) = fr  zf(Z)- Zo dz. (14) 

However ,  when the slope of F is discont inuous at z o, with interior angle fl, the Cauchy  
integral formula  assumes the form 

fr  f(z) flif(z°) = z -- z o m d z .  

In part icular,  when fl = ~/2, we obtain the formula  at a corner  

f f(z) dz. 
2 - i f ( z ° )  = Jr z - z o (15) 

Let f(z) = U(x, y) + iV(x, y) and z - z o = pe  i'. Let s be the arc length along the contour  F 
and n the inward unit no rmal  to F. Then the Cauchy-Riemann  condit ions are 

3U c~V c3U ~V 

3s On ' On 3s ' 

¢3(ln p) ¢%¢ O(ln p) Oct 
Os On'  On Os " 

(16) 

N o w  z - z o =pe i" and hence dz = (z - Zo)(d(ln p) + ida) and equat ion (14) becomes 

7~[iU(xo, Yo) - V(xo, Yo)] = fr  [U(x, y) + iV(x, y)][d(ln p) + id~t]. 

Equat ing  the real and imaginary  parts,  we obtain 

2zU(xo, Yo) = fr  V(x, y)d(ln p) + fr  U(x, y)dct, 

zcV(xo, Yo) = - fr  U(X, y)d(ln p) + fr  V(X, y)d~. (17) 
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These integral equations are those used by Lauck [9] to obtain the flow over a weir by 
means of graphical integration. Integrating by parts the first integrals of both equations of 
(17) and using (16), we obtain 

fr aU(x,y) lnpds_ f r U ( X , y ) ~ d s  ' nU(xo, Yo) = On 

fr--  fr O(ln p) nV(xo, Yo) = aV(X,on y) In p ds - V(x, y) T ds. (18) 

Equations (18) are of the same form as the equation of Jaswon [7] (equation (18) of [7]) 
and also Green's boundary formula. Applying (16) again, we find that equations (17) and 
(18) can be rewritten in the following form: 

f r - -  fr Oct 
aV(x, y) 

nU(xo, Yo)= - lnpds + U(x,y)-~-ds, as u s  

aU(x,y) lnpds + V(x,Y)~s dS. rcV(xo, Yo) = as (19) 

For a corner point Zo, (15) will become 

aV(x, Y) L U(xo, Yo) = - | 2 dr as - - l n p d s + f r U ( X , Y ) ~ s d S ,  

fr aU(x' Y) fr Oct n__ V(xo, Yo) = - -  In p ds + V(x, y) ~ ds. 2 as 
(20) 

In the next section, we obtain a method for solving the water-wave problem using (19) and 
(20) with U = U(~, ~u) = In q(~b, ~u) and V = V(~, ~) = - 0(q~, ~,). 

4. The numerical scheme 

Let F be the rectangle ABCD in the w-plane in Fig. 1, and ~b 1 and ql be known quantities. 
Divide each side of the rectangle into a number of equal subintervals. Then (19) and (20) can 
be written as the following discrete qums: 

fj aV(x, y) 
nU(xo, yo) = - ~ as fj  Oct - - l n p d s + ~ ,  U(x,Y) Oss ds, 

J 

8U(x,y) lnpds +~, V(x,y)~-sdS, nV(xo, Yo) = Os j (21) 

when (x o, Yo) is not a corner point, and 

fj OV(x, y) ~ Oct 2-1r U(xo, Yo) = - ~ --Os In p ds + Z1 U(x, y) -~s ds, 
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fj OU(x, y) fj ~ 
n V(xo ' Yo) = - -  In p ds + ~ Os ~ V(x'Y)~sdS' (22) 

for a corner point (Xo, Yo), where the integrals in (21) and (22) range over all subintervals of 
F. We approximate each integral by Simpson's formula, that is, 

h 
f(x)dx = f(x)dx = -~ [f(-h) + 4f(0) + f(h)] + O(h5), 

h 

where f(x) is any integrand of (21) and (22). 
Symm [19] assumed that U, V, OU/Os, aV/as are constant in each subinterval and 

approximated the integrals with the remaining integrand. Hence the results Symm [19] 
obtained are exact only when U and V are constant; that is, it is a first-order approximation. 

Let h x and hr be the lengths of the subintervals along the horizontal and vertical sides 
respectively. For each particular node, w o = ~b o + i~, o, one of the end points of the 
subintervals, we have to compute the values of In p and da/8s, where p2 = (~b - q~o) 2 n t- (q/ 

- ~,o) 2 and tan ~ = (~, - ~,o)/(q5 - q~o) with q~ + i~u # q~o + i~Uo. Note that if ~b + iq/¢ ~b o 
+ i~Uo, then 

Oa (3a ~, - ~u o 
~s a4~ (q~ - 4~o) 2 + ( ~  - ~,o) 2 

when ~b + iq/is a point on a horizontal side, and 

a ~  a~  - (4~ - 4~o) 

as a ~  (4~ - 4,0) 2 + (~u - ~Uo) 2 

when 4) + i~u is a point on a vertical side. 
Henceforth we shall write 

U =  U(q~,~,)=lnq, V =  V(~b,~u)= -0 .  

Consider equation (17) (equation (10) of Lauck [9]) and equation (18) or (19) (equation 
(18) of Jaswon [7]). When p is small, - I n  p is much smaller than lip. Hence we can expect 
to obtain greater accuracy using (19) instead of (17). However, we still need a particular 
formula for integration when the integral contains the singular point w 0 = q~o + i~u0. 

Using the Taylor series expansion, we have 

f h (~U In ~b dq5 
h a~ 

= h --~- 0 + \ O~ b2 ,]0 + ~ -  \ 0q ~3 ,]o + ~ -  \O~- , ]0  + ' ' "  In 14'1 dq~ 

2h(ln h , ) (O_~_) h 3 (O3~_a) = - + T (3 In h - 1) + O[hS(5 In h - 1)], (24) 
0 0 

where the subscript 0 refers to the point (4)o, q/o). 
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Suppose that  w o = q~o + iq/o is a point  near  a corner,  say B = (~b o + h~) + iq/o in Fig. 1, 
on side AB, and we wish to integrate 

f 
~ + hy t~O~ v(4 o + 

in the second integral of  (21). If  h x and hy are small, it appears  that  t%t/O~u will increase 

rapidly as the point  ~b + i~u approaches  B along CB and attains its m a x i m u m  value at B. 
Hence, we need a more  accurate  formula  for that  integral. Applying the Taylor  expansion 
for U(q~ o + hx, q/) at B, we obtain 

f~ ,  ~ct U(dp o + hx, qJ) - ~  d~ 

h~ d~u = aq + - ~1 r Xh2+h  L \ h r J  ~ ~-. \O~uzJ, 

r8:hx  

8 (._~h 3 (h~'~ {h~'~ -] h~ ( 4 U ~  (25) 
,o 6: + 

where tan el  = 2hJhx and (02"+1U/0~ ,2"÷ 1)B, n = 0, 1, 2 , . . . ,  are assumed to be zero. 

As we are going to compute  OU/Os, O2U/Os 2, OaU/Os a and so on, we need the values of  U 

and V along AB, BC, CD and DA, and also outside the rectangle ABCD (See Fig. 2). Since 
V = 0 on AB, BC and DA, we may  apply the principle of reflection to obtain the necessary 
values of U along AA', AA", BB', BB", CC' and DD', and V along CC' and DD'. For  values 

of U on CC" and DD", we apply  the reflection principle across the free streamline (see 

Appendix).  Using the Taylor  series expansion,  we have 

6 0 h x ( ~ ] = g 5 ( u a -  U_I )  - 9(U 2 - U_2)  "~ (U  3 - U_3) + O(h7), 
o 

2f  O2U~ 
180h~ k ~ - ) o  = 270(U a + U_ a) - 27(U 2 + U_ 2) + 2(U a + U_ a) 

- 490U o + O(ha), (26) 

3/OsU\ 
8 h ~ - ) o  = - 1 3 ( U  a - U_a ) + 8(U 2 - U_2 ) - (U s - U_a ) + O(h7), 

where Uj = U(~b o + jh x, ~to), and again the subscript  0 refers to the point  (~bo, ~Uo). 
The  same formula  can be used for 8U/8~t, OV/O(a, OV/O~u etc. The derivatives (o2nu/o~ll2n)B , 

n = 1, 2, 3, in (25) can be evaluated using the following: 
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B" 

h 2 /" c~ev \ 
180-~-.v ~-~T~2 )n = 270U 1 - 27U z + 2 U a -  245U o + O(hrl4), 

72 h4r (O'U'~ \ 0~,4 j .  = - 3 9 U  1 + 12U z - U 3 + 28U o + O(h~4), (27) 

h6 
360 ~ . ,  \-d~-¢6/, = 15u1 - 6u2 + u3 - lOUo + O(h~"). 

We compute  the integral in (4) by writing 

f2 h h f(x)dx = ~- (fo + 2fl + ' "  + 2f._1 + f . )  

h z 
+ ~ (f• - f/,) + O(h 4) 

for small n (n = 2, 3, 4) and 

fl f (x)dx = ~ O C o  + 2fl + . . .  + 2f._ 1 + f . )  

- h[i~(Vf.  - Afo ) + 2-~(vaf. + AEfo) + 7@o(Vaf. - Aafo) 

8 6 3  [ V 5 / "  __ ASfo) + 2 7 5  [ V 6 f  + l@6(V4fn d- A4fo) + 6 0 4 8 0 ' , - -  . I n  2-2"~'~,-- an "+- A6fo)] + O(hs) (28) 

for large n (n > 4), where fs = f (x  = jh), see Fr6berg  [-3]. 
Initial values of  U = In q and V = - 0  a long the sides of  ABCD were estimated,  using 

smoo th  piecewise quadrat ic  interpolat ion,  remember ing  that  0 = 0 along AB, BC and AD. 
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For the iterative method, the Gauss-Seidel procedure was used. New values of U on AB, BC 
and DA, and V on CD, were obtained using (21), and U at A and B (corners) using (26). The 
necessary derivatives of U and V were evaluated using (25). The free-surface condition then 
provided a new value of (dimensionless) g, since the current V was known on CD, and ~b 
= ~b 1 and q --- ql in (4). Knowing g, (4) was then used to find U along CD also, using (28), 
and the derivatives of U on CD by means of (25). 

The procedure was repeated until successive approximations differed by a prescribed 
small number 10-k, where k = 6 in most cases, and k = 4 in a few cases. At a particular 

(boundary) point (~, ~,), we computed U or V using (21) or (22). For  convenience we define 
an "iteration" to be the computation of U at all points on DA, AB and BC, and V at all 
points on CD; and a "cycle" to be three iterations together with evaluation of all necessary 
derivatives of U or V using (26), computing U along CD using the free surface condition (4), 
and computing the necessary derivates of U using (26). In the next section, we shall discuss 
the number of cycles necessary for convergence. 

5 .  N u m e r i c a l  r e s u l t s  

It was mentioned, in Section 2, that we had normalized so that the flux ~'1 = 1, and the 

speed in the trough qo = 1. We may then expect the iterative procedures outlined above to 
work well in the vicinity of ~b 1 = 1 and when ql is not too close to zero. When ~b 1 is large, 
shallow-water theory can be applied, and when ~b 1 is small, deep-water theory. When ql 
= 1, uniform flow is obtained, and as ql --* 0, the highest wave is approached. 

It was found most convenient, for our purposes, to fix ~b 1 and q~, and then compute a, h, 2, 
c 2, and g. For this reason, it was not easy to produce results that could be compared with 

o Thomas' data [20] 

0.6 
X present paper ~ h-=O " ] 5 

~ =0. I065a 
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Figure 3. 
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h £2 a a 

1.14271 0.8 0.43791 0.14103 0.03058 0.03495 
0.6 0.43915 0.14725 0.06535 0.07568 
0.5 0.44 0.15221 0.08277 0.09458 

0.71911 0.8 0.69623 0.22402 0.04858 0.03493 
0.6 0.69933 0.23386 0.10386 0.07467 
0.5 0.70150 0.24170 0.13157 0.09461 

0.6 0.8 0.83465 0.26827 0.05817 0.03490 
0.6 0.83913 0.28007 0.12434 0.07460 
0.5 0.84223 0.28947 0.15754 0.09453 

0.3 0.8 1.67173 0.51289 0.11109 0.03333 
0.6 1.68860 0.53551 0.23655 0.07096 
0.5 1.70019 0.55356 0.29895 0.08968 

0.15 0.8 3.34841 0.79467 0.17030 0.02555 
0.6 3.39526 0.83938 0.35620 0.05343 
0.5 3.42430 0.87180 0.44512 0.06677 

0.10632 0.8 4.72602 0.89777 0.18943 0.02014 
0.7 4.75467 0.92760 0.29086 0.03092 
0.6 4.79044 0.96671 0.39189 0.04167 
0.55 4.80856 0.98814 0.44067 0.04686 
0.5 4.82 1.00902 0.48965 0.05204 

those of Thomas [20], which would require selection of the values of ¢1 and ql so that 
resultant values of h/2 agreed with those used by Thomas. However, this was done, if at the 
expense of extra computing time and the results are shown in Figure 3. It was observed, from 
the computed results, that ¢~ is a decreasing function of h/2, forfixed q~. This made it easier 
to adjust ¢1, when necessary, to produce a desired value of h/2. 

Two particular difficulties arose in the computing procedure adopted. The first was that 
the integrand of the second integral of (21) changed very rapidly for points near a corner, 
because of the form of 0ct/8~,. This difficulty was circumvented by using a formula (25) 
yielding greater accuracy. Secondly, the first integral of (21) became singular when the jtla 
sub-interval contained 0. This, in turn, was overcome by expanding OU/O~u as Maclaurin 
series and integrating term-by-term, as shown in (24). 

It was found that the lengths h x and hy, the sub-intervals, had to be comparable, in order 
to obtain uniform accuracy around the contour. When considering shallow, or deep, water 
waves, it was found that it was not possible to obtain the same rapidity of convergence. 
However, we were principally interested in obtaining the profiles of waves in which the 
wave-length and depth were of the same order of magnitude. 

The computed results are summarized in Tables 1, 2 and 3. Between three and five sets of 
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TABLE 2 

T. H. Lira and A. C. Smith 

41 ql a d h I h ff 2 c c I 

0.43791 0.8 0 .03359 0.01585 1.08263 1.09848 5 .35830 0.96128 0.91110 0.91110 
0.43915 0.6 0 .07724 0.03367 1.14829 1.18197 4 .14267 1.03436 0.84912 0.84912 
0.44000 0.5 0 .10023 0.04148 1.16944 1.21092 3.74158 1.05969 0.83043 0.83041 

0.69623 0.8 0 .05339 0.02520 1.07385 1.09906 3.37132 1.52836 0.91108 0.91108 
0.69933 0.6 0 .12302 0.05368 1.13106 1.18474 2 .60130 1.64750 0.84896 0.84895 
0.70150 0.5 0.15993 0.06634 1.14920 1.21554 2 .34484 1.69034 0.83001 0.83000 

0.83465 0.8 0.06395 0.03018 1.06915 1.09933 2.81461 1.83220 0.91109 0.91109 
0.83913 0.6 0.14747 0.06433 1.12170 1.18603 2 .17000 1.97673 0.84901 0.84901 
0.84223 0.5 0 .19182 0.07952 1.13804 1.21757 1.95500 2.02925 0.83009 0.83010 

1.67173 0.8 0.12222 0.05722 1.04304 1.10026 1.47270 3.66759 0.91162 0.91185 
1.68860 0.6 0.28157 0.12057 1.06973 1.19031 1.13650 3.96786 0.85114 0.85202 
1.70019 0.5 0 .36597 0.14811 1.07607 1.22418 1.02468 4.08062 0.83330 0.83455 

3.34841 0.8 0 .18667 0.08188 1.01422 1.09610 0 .96429 7.30710 0.91648 0.91765 
3.39526 0.6 0 .41780 0.15603 1.01692 1.17294 0.76591 7.81978 0.86838 0.87235 
3.42430 0.5 0 .53356 0.18247 1.01621 1.19867 0 .70283 7.99128 0.85701 0.86229 

4.72602 0.8 0 .20610 0.08239 1.00562 1.08801 0.87336 10.23364 0.92362 0.92525 
4.75467 0.7 0.32608 0.11562 1.00546 1.12108 0.78202 10.54485 0.90180 0.90507 
4.79044 0.6 0 .44932 0.14174 1.00480 1.14653 0.71219 10.78367 0.88846 0.89337 
4.80856 0.55 0.50958 0.15192 1.00445 1.15637 0.68439 10.87518 0.88432 0.88997 
4.82000 0.5 0 .57074 0.16270 1.00289 1.16559 0.65705 10.96620 0.87906 0.88668 

values of ql, ~bl, c2/(ff h) and a/h have been found for each of five values of h/2. These data 
have been plotted in Figure 3 and compared with those of Thomas. When 0.15 < h/2 < 0.6, 
the results agree well, except for h/2 = 0.15 and small values of q r When h/2 = 0.10632, the 
two curves are quite different. When h/2 > 0.6, there are no corresponding values in 
Thomas' paper. No tables have been given by Schwartz [16], or Wehausen and Laitone 
1-22], but a comparison with their graphs, when 0.0168 < h/2 < 0.3, and 0.05 < h/2 < 0.6, 
respectively, shows good agreement, producing smooth and comparable curves. 

Table 3 shows the profile and surface inclination of the wave with ql = 0.6 and 
~b 1 = 4.79044, corresponding to the third last line of Tables 1 and 2. It should be remembered 
that all quantities are dimensionless, so that the corresponding physical quantities are 
obtained by multiplying velocities by qo and lengths by ~ul/q o. 

The iterative procedure was terminated when successive approximation agreed up to the 
sixth decimal place, which in most cases, required about 24 cycles. When hi2 = 0.10632, 36 
cycles were required to obtain agreement up to the fourth decimal place. 

6. Numerical checks 

A number of checks were applied to the numerical procedure. First, the values of y obtained 
by using (2) and (5) were compared, and in most cases were found to agree up to the seventh 
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i q(i) O(i) x(i) y(i) 
(degrees) 

1 1.000~000 0.00000000 0.00000000 0.00000000 
2 0.99953580 0.81871140 0.02997150 0.00021385 
3 0.99814470 1.62781136 0.05996480 0.00085417 
4 0.99582280 2.43966464 0.09000182 0.00192094 
5 0.99255500 3.24859066 0.12010900 0.00341810 
6 0.98833200 4.05569104 0.15030300 0.00534556 
7 0.98313000 4.85686890 0.18061100 0.00770859 
8 0.97692820 5.65442037 0.21105930 0.01050945 
9 0.96969200 6.44248699 0.24167560 0.01375511 

10 0.96139380 7.22404520 0.27249060 0.01744737 
11 0.95198300 7.99092548 0.30353710 0.02159631 
12 0.94142430 8.74661032 0.33485310 0.02620276 
13 0.92964950 9.47965658 0.36647880 0.03127909 
14 0.91661460 10.19342531 0.39846270 0.03682423 
15 0.90223170 10.87192720 0.43085650 0.04285192 
16 0.88644890 11.51694477 0.46372500 0.04935662 
17 0.86915960 12.10580057 0.49713710 0.05635040 
18 0.85031030 12.63601267 0.53118190 0.06381828 
19 0.82978590 13.07435418 0.56595650 0.07176363 

20 0.80755650 13.40623945 0.60158540 0.08015007 
21 0.78354500 13.58242797 0.63820830 0.08895296 
22 0.75783000 13.55874512 0.67600350 0.09808576 
23 0.73053760 13.26347210 0.71516860 0.10744540 
24 0.70211560 12.58638846 0.75594210 0.11682760 
25 0.67342720 11.41934774 0.79856340 0.12592020 
26 0.64600020 9.60817342 0.84323700 0.13425850 

27 0.62246370 7.00052012 0.89002280 0.14113750 
28 0.60619900 3.79540286 0.93864460 0.14574210 
29 0.60 0.00000000 0.98836690 0.14746510 

decimal place. Secondly, a number of trends were observed; assuming, as we did, that the 

streamlines crossing AD are concave up, and those crossing BC are concave down, then q 
should decrease along the free surface from trough to crest, and around the contour DABC, 
attaining its maximum at D and minimum at C. 0 should rise to a single maximum between 

D and C. Thirdly, and most importantly, the total momentum flux across AD should be 

equal to that across BC. This result can easily be established using the following analogy of a 
lemma of Levi-Civita's [10, p. 276]: 

frq2dy = 2 frU(Udy- vdx) (29) 

where q2 = u 2 + v 2, and u and v are conjugate harmonic functions. The lemma follows at 
once from Green's theorem. 

When F is the contour ABCD in the xy-plane (Figure 1), we find that (in dimensional co- 
ordinates): 
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MAO = (p + u2)dy = -~ u2dy + h~(q20 + 9hl) 

1 2 1 2 wherep+½(u  2 + v  2 ) + g y = 2 q o + g h i  =2ql +gh 2andh 2 = a + h  l is the depth BC. 
Likewise 

MBC = JB (p + u2)dy = ~ u2dy + h2(q2 + 9h2) " 

Applying (29) it is easy to show that MAO = MBC; that is, the total momentum flux across 
AD is equal to that across BC. 

Sample checks yielded the following comparisons (in dimensionless form): 

qx ¢, MAD MBC 

0.6 0.83913 0.1002764 O. 1002297 
0.6 1.68860 0.1914649 0.1914360 

Appendix 

The analytic continuation of harmonic functions across the free streamline is made possible 
by a method due to Lewy [24] based upon the following theorem which we quote in his 

notation: 
Let U(x, y) be harmonic near the origin in y < 0, and V(x, y) a conjugate harmonic of U. 

Let U, V, U x exist and be continuous in the semi-neighbourhood of y < 0 of the origin. If the 
boundary values on y = 0 satisfy a relation of the form 

Uy = A(x, U, V,, Ux) (B) 

in which A is an analytic function of all four arguments for all values occurring, then U(x, y) 
and V(x, y) are analytically extensible across y = 0. 

We shall be concerned only with extension along the lines corresponding to x = constant 
(actually tp = constant in our notation). It suffices then to say that the analytic extension is 

given by 1"24, equation Er] 

dG(O, y) dF(O, y) 
dy dy 

A Iiy, G(O, y) + F(O, y), i(G(O, y) - F(O, y)), 

d 3 - i ~ (G(O, y) + F(O, y)) 

where 

(E~) 

2F(z) = U(x, y) + iV(x, y), 

2G(0, 0) = U(0, 0) - iV(O, 0). 
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The analytic continuation of F(z) along x = 0 is then given by 

F(0, y) = ~(0, - y ) ,  y _> 0, 

where G(0, y) is the solution of (Er) subject to the initial condition G(0, 0 ) =  U(0, 0) 

- iV(O, 0). 
Changing to the notation of this paper, we replace x and y by q~ and ~, and U and V by x 

and y respectively. The free-surface condition (2) can be written in the form (B) as 

x¢, = -29(h _ y) x = A[~b, x, y, x,~] (B~) 

where ~b and x do not occur explicitly. 
Then (Er) assumes the form (along ~b = 0): 

[ d ] dG _ dF A c ~ , x , i ( G -  F), - i ~ ( G  + F) 
d~u d~u 

which simplifies to 

dG 1 
= (E~) 

dql dF 
- - 8 g [ i ( G  - F) - hi 
dql 

where now 

F(O, q/) = x(O, gt) + iy(O, ~), 

F(O, ~,) = 5(0, - V )  V -> O. 

Equation (E~) was integrated numerically along q~ = 0 and ~b = ( b l ,  providing con- 
tinuations of x and y across the free streamlines. It was found that the difference between the 
continuations obtained using Lewy's method and those obtained using Schiffman's method 
[15] (i.e. g = 0) was quite small, and did not materially effect the shape of the wave except 
for an occasional change in the sixth decimal place. 

Acknowledgement 

We wish to thank the National Research Council of Canada for the partial support of one of 
us (T.H.L.), through Grant  No. A3098. 

R E F E R E N C E S  

[1] Conway, W. E. and Thomas, J. W., Free streamline problems and the Milne-Thomson integral equations, J. 
of Maths. and Phys. Sci., vol. 8 (1) (1974) 67-92. 

[2] De, S. C., Contributions to the theory of Stokes waves, Proc. Cambridge Phil. Soc., 51 (1955) 713-736. 
I-3] FrSberg, C. E., Introduction to Numerical Analysis, Addison-Wesley, New York (1969). 

Journal of Engineering Math., Vol. 12 (1978) 325-340 



340 T. H. Lim and A. C. Smith  

[4] Gerstner, F. J. V., Theorie der Wellen sammt einer abgeleiteten Theorie der Deich-profile, ,4bh. bi~hm. Ges. 
~ss. (3) 1, Abt. 1, St~ick 1 (1804); summarized in "'Hydrodynamics", H. Lamb. p. 421, Cambridge Univ. Press 
(1932). 

[5] Havelock, T. H., Periodic irrotational waves of finite height, Proc. Roy. Soc. Iond., Set. A 95 (1919) 38-51. 
[6] Hunt, J. N., A note on gravity waves of finite amplitude, Quart. J. Mech. ,4ppl. Math., 6 (1953) 336-343. 
[7] Jaswon, M. A., Integral equation methods in potential theory I, Proc. Roy. Soc., ,4. 275 (1963) 23-32. 
[8] Kras•vskii•YuP.•Theexistence•faperi•dicwavewithfreeb•undaries•D•kl.`4kad.NaukSSSR• 133 (1960) 

768-770. 
[9] Lauck, A., Ueberfall fiber ein Wehr. Z. angew. Math. Mech., 5 (1) (1925) 1-16. 

[1(3] Levi-Civita, T., D6termination rigoureuse des ondes permanentes d'ampleur finie, Math. Ann., 93 (1925) 264- 
314. 

[11] Longuet-Higgins, M. S., On the decrease of velocity with depth in an irrotational water wave, Proc. 
Cambridge Phil. Soc., 49 (1953) 552-560. 

[12] Michell, J. H., The highest waves in water, Phil. Mag., (5) 36 (1893) 430-437. 
[13] Nekrasov, A. I., On waves of permanent type, I, Izv. Ivanovo-Voznesensk. Politekhn. Inst.i 3 (1921) 52-65. 
[14] Schwartz~ L., Computer extension and analytic continuation of Stokes' expansion for gravity waves, J. Fluid 

M~ch., 62 (3) 0974) 553-578. 
[15] Shiffman, M., On free boundaries of an ideal fluid, the principle of analytic continuation, I, Comm. on Pure 

and Applied Math., 1 (1948) 88-99. 
[16] Stokes, G. G., Report on recent researchs in hydrodynamics; Report of the Sixteenth Meeting of the British 

Association for the Advancement of Sci., Southampton, (1846), pp. 1-20, London: John Murray (1847) = 
Math. and Phys. Papers. vol. l, pp. 157-187, Cambridge (1880). 

[17] Stokes, G. G., Supplement to a paper on the theory of oscillatory waves, Math. and Phys. Papers, vol. l, pp. 
314-326, Cambridge (1880). 

[18] Struik, D. J,, D6termination rigoureuse des ondes irrotationnelles permanentes darts un canal ~ profondeur 
finie, Math. Ann., 95 (1926) 595-634. 

[19] Symm, G. T., Integral equation methods in potential theory II, Proc. Roy. Soc. ,4., 275 (1963) 33-46. 
[20] Thomas, J. W., A numerical study of the relationship between the dimensionless parameters in the problem of 

periodic waves of permanent type in a liquid of finite depth, Quart. of,4ppl. Math., 32 (4) (1975) 403-410. 
[21] Ursell, F., Mass transport in gravity waves, Proc. Cambridge Phil. Soc., 49 (1953) 145~-150. 
[-22] Wehausen, J. V. and Laitone, E. V., Surface waves, Encyclopedia of Physics, vol. 9 (1960) 446-778. 
[23] Yamada, H., Highest waves of permanent type on the surface of deep water, Rep. Res. Inst. ,4ppl. Mech., 

Kyushu Univ. 5, No. 18 (1957) 37-52. 
[24] Lewy, H., A note on harmonic functions and a hydrodynamical application, Proc. ,4met. Math. Soc., 3 (1952) 

l l l - l l 3 .  

Journal of Engineering Math., Vol. 12 (1978) 325-340 


